2020 年度 授業計画(シラバス)

学 科	臨床工学技士学科		科目	区	分	専門基礎分野	授業の方法	請	毒義演習
科目名	電気工学		必修/逞	銭択∅	D別	必修	授業時数(単位数)	60	(2) 時間(単位)
対象学年	1年生		学期及7	が曜日	寺限	通年	教室名		403
担当教員	泉 照之	主発経師と	通商産業省工業技術院、山口大学工学部、島根大学総合理工学部にて研究・教育 に従事 島根大学名誉教授						

《授業科目における学習内容》

直流回路、交流回路、過渡現象、電力装置など回路理論を中心に電気工学の基礎について学ぶ。また、医療機器として必要な知識をあわせて学ぶ。

《成績評価の方法と基準》

出席状況、小テスト、試験の結果を基に総合的に評価する。

《使用教材(教科書)及び参考図書》

臨床工学講座 医用電気工学1 第2版(医歯薬出版)

《授業外における学習方法》

各単元の予習及びノートまとめ

《履修に当たっての留意点》

各単元の予習と復習を行い講義の内容はノートに記録すること。

	授業の 方法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第	講義演	授業を 通じての 到達目標	身近な電気・静電気、電気と医療機器の概要が理解できる。		各単元の予習及びノー トまとめ
1	興習形式	各コマに おける 授業予定	身の回りの電気・静電気、電気と医療機器	教科書	
第	講義演	授業を 通じての 到達目標	電荷と電流の関係、電圧と電位について理解ができる。		各単元の予習及びノー トまとめ
2	興習形式	各コマに おける 授業予定	電荷と電流、電圧と電位	教科書	
第	講義沒	授業を 通じての 到達目標	電位、電位差、アース、開回路、閉回路、オームの法則が理解できる。		各単元の予習及びノー トまとめ
3 習 選 形	演習形式	各コマに おける 授業予定	電位、電位差、アース、開回路、閉回路、オームの法則	教科書	
第	講義演	授業を 通じての 到達目標	指数の計算、オームの法則が理解できる。		4 W - 0 Z 10 D z v
4	闽習形式	各コマに		教科書	各単元の予習及びノー トまとめ
第	講義演	授業を 通じての 到達目標 直列接続抵抗の計算ができる。			カビーのマ型カイドン
回 晋	漢習形式	各コマに おける 授業予定	直列接続抵抗の計算	教科書	各単元の予習及びノー トまとめ

授業の 方法			内 容	使用教材	授業以外での準備学習 の具体的な内容
第	講義演	授業を 通じての 到達目標	並列接続抵抗・直並列接続抵抗の計算ができる		各単元の予習及びノー トまとめ
6 □	習形式	各コマに おける 授業予定	並列接続抵抗・直並列接続抵抗の計算	教科書	
第	講義演	授業を 通じての 到達目標	単位について、単位の接頭辞(接頭語)が理解できる。		各単元の予習及びノー トまとめ
7 回	個習形式	各コマに おける 授業予定	単位について、単位の接頭辞(接頭語)	教科書	
第	講義演	授業を 通じての 複雑な回路の電流計算、キルヒホッフの法則が理解で 理事標			各単元の予習及びノー
8 🗓	個習 形式	各コマに おける 授業予定	複雑な回路の電流計算、キルヒホッフの法則	教科書	トまとめ
第	講義演	授業を 通じての 到達目標 重ね合わせの理が理解できる。			友出二の玄羽ロッド・
9	習形式	各コマに おける 授業予定	重ね合わせの理	教科書	各単元の予習及びノー トまとめ
第	講義演	授業を 通じての 到達目標	テブナンの定理が理解できる。		各単元の予習及びノー トまとめ
回	個習形式	各コマに おける 授業予定	テブナンの定理	教科書	
第	講義演	授業を 通じての 到達目標	抵抗・電流・電圧の適切な測定方法を理解できる。		各単元の予習及びノー トまとめ
11 回	興習形式	各コマに おける 授業予定	抵抗の測定法、電流計、テスターの原理、電流・電圧計法	教科書	
第	講義演	授業を 通じての 到達目標	ブリッジ回路の意味と計算方法が理解できる。		各単元の予習及びノー トまとめ
12 回	習形式	各コマに おける 授業予定	ブリッジ回路	教科書	
第	講義演	授業を 通じての 到達目標	直流電圧測定、分圧器、分圧の式が理解できる。		各単元の予習及びノー トまとめ
13 回	個習 形式	各コマに おける 授業予定	直流電圧測定、分圧器、分圧の式	教科書	
第	講義演	授業を 通じての 到達目標 直流電流測定、分流器、分流の式が理解できる。			夕出一のマヨロベン
14 回	伸習形式	各コマに おける 授業予定	直流電流測定、分流器、分流の式	教科書	各単元の予習及びノー トまとめ
第	講義演	授業を 通じての 到達目標 電圧源と内部抵抗が理解できる。			各単元の予習及びノー
15 回	漢習形式	各コマに おける 授業予定	電圧源の接続と内部抵抗	教科書	トまとめ