2020 年度 授業計画(シラバス)

学 科	臨床工学技士学科		科目区分	その他	授業の方法	演習
科目名	国試演習		必修/選択の別	必修	授業時数(単位数)	120 (4) 時間(単位)
対象学年	三年次		学期及び曜時限	後期	教室名	401教室
担当教員	専任教員	実務経験と その関連資格				

《授業科目における学習内容》

国家試験の専門基礎科目、専門科目についての知識を獲得する。

《成績評価の方法と基準》

国家試験判定基準に達していること

《使用教材(教科書)及び参考図書》

1~3年次に使用した教科書 配布資料

《授業外における学習方法》

国家試験範囲の学習

《履修に当たっての留意点》

1年次の基礎科目、2年次の専門基礎科目、3年次専門科目を見直し

拇当	授業の					
	方法		内 容	使用教材	の具体的な内容	
31	演習	授業を 通じての 到達目標	回路素子、光学素子、センサ、電池が理解できる。	電池が理解できる。		
	育形式	各コマに おける 授業予定	電子回路	教科書・プリント	各単元の予習と復習	
第	授業を通じての 到達目標		PN接合、整流作用、キャリア、バイアス、各種増幅が理解できる。		各単元の予習と復習	
102	習形式	各コマに		教科書・プリント		
33 1	演習	授業を 通じての 到達目標	理想オペアンプ、反転・非反転・差動増幅、加算回路が理解できる。		各単元の予習と復習	
	百形式	各コマに おける 授業予定	演算増幅器	教科書・プリント		
第	演習	授業を 通じての 到達目標	フリップフロップ、組み合わせ論理回路、ブール代数が理解できる。			
[D]	育形式	各コマに		教科書・プリント	各単元の予習と復習	
第 35 5		授業を 通じての 到達目標	変調、復調、各種通信方式が理解できる。		各単元の予習と復習	
	習形式	形 各コマに	通信工学	教科書・プリント		

	業の法		内 容	使用教材	授業以外での準備学習 の具体的な内容
弗 36 回	演習形式	授業を 通じての 到達目標	AD変換、DA変換、量子化、分解能が理解できる。	教科書・プリント	各単元の予習と復習
		各コマに おける 授業予定	信号処理		
37	演	授業を 通じての 到達目標	2進数、16進数、基数変換、論理演算が理解できる。		各単元の予習と復習
	習形式	各コマに おける 授業予定	情報表現と論理演算	教科書・プリント	
第	演	授業を 通じての 到達目標	コンピュータの基本構成、補助記憶装置、入出力装置、インター フェースが理解できる。		各単元の予習と復習
38 回	習形式	各コマに おける 授業予定	コンピュータハードウェア	教科書・プリント	
第	演	授業を 通じての 到達目標	OSの種類、プログラミング言語の種類と用途が理解できる。		
张 39 回	習形式	各コマに おける コンピュータソフトウェア 授業予定		教科書・プリント	各単元の予習と復習
弗 40 回	演	授業を 通じての 到達目標	LAN、WAN、インターネット、セキュリティ技術が理解できる。		各分野の予習と復習
	習形式	各コマに おける 授業予定	コンピュータネットワーク	教科書・プリント	
第	演習	授業を 通じての 到達目標	力, 合力と分力, 力のモーメントの概念を理解し, 演習問題を解くことができる。		各単元の予習と復習
41 回	習形式	各コマに おける 授業予定	カ:力とは,合力と分力,力のモーメント	教科書・プリント	
第	演習	授業を 通じての 到達目標	応力とひずみ,ポアソン比,応力一ひずみ曲線,体積弾性率,応力集中,安全率について理解し,演習問題を解くことができる。		各単元の予習と復習
42 回	形式	各コマに おける 授業予定	材料力学:応力とひずみ,ポアソン比,応力一ひずみ曲線,体積弾性率,応力集中,安全率	教科書・プリント	
第	演羽	授業を 通じての 到達目標	粘性の定義, ニュートン流体と非ニュートン流体, 血液の粘性的性質, 固体の粘性の概念を理解し, 演習問題を解くことができる。		各単元の予習と復習
43 回	習形式		粘弾性: 粘性の定義, ニュートン流体と非ニュートン流体, 血液の 粘性的性質, 固体の粘性	教科書・プリント	
弗 44 同	演習形式	授業を 通じての 到達目標	力と運動について,基礎知識,落下運動,等速円運動,バネの 振動,摩擦のある面上での運動を理解し,演習問題を解くことが できる。	松	各単元の予習と復習
		各コマに おける 授業予定	力と運動:基礎知識, 落下運動, 等速円運動, バネの振動, 摩擦 のある面上での運動	教科書・プリント	
第 45 回	演習形式	授業を 通じての 到達目標	エネルギー(仕事)の定義, 運動エネルギーと位置エネルギー, エネルギー保存の法則, 仕事率の概念を理解し, 演習問題を解 くことができる。	券科⇒ プロック	各単元の予習と復習
		各コマに おける 授業予定	エネルギー:エネルギー(仕事)の定義, 運動エネルギーと位置 エネルギー, エネルギー保存の法則, 仕事率	教科書・プリント	